organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 3,6-dihydroxy-6-methyl-4-phenyl-4.5.6.7-tetrahvdro-1H-indazole-5carboxylate monohydrate

Abel M. Maharramov,* Arif I. Ismiyev and Bahruz A. Rashidov

Baku State University, Z. Khalilov St. 23, Baku AZ-1148, Azerbaijan Correspondence e-mail: orglab@mail.ru

Received 20 December 2010; accepted 17 January 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.077; wR factor = 0.198; data-to-parameter ratio = 12.5.

In the title compound, $C_{17}H_{20}N_2O_4 \cdot H_2O$, the cyclohexene ring adopts a half-chair conformation while the indazole ring is essentially planar [maximum deviation = 0.0192 (12) Å]. In the crystal, pairs of intermolecular O-H···N hydrogen bonds link the molecules into dimers lying about inversion centers and intramolecular O-H···O hydrogen bonds result in sixmembered rings. The dimers are further connected by N- $H \cdots O$ and $O - H \cdots O$ hydrogen bonds.

Related literature

For general background to azoles, see: Genin et al. (2000). For a related structure, see: Hema et al. (2006).

Experimental

Crystal data $C_{17}H_{20}N_2O_4 \cdot H_2O$

 $M_r = 334.37$

Triclinic, P1	
a = 6.9964 (15) Å	
b = 8.8647 (19) Å	
c = 15.124 (4) Å	
$\alpha = 99.363 \ (6)^{\circ}$	
$\beta = 95.281 \ (6)^{\circ}$	
$\gamma = 112.271 \ (4)^{\circ}$	

Data collection

Bruker APEXII CCD	6332 measured reflections
diffractometer	2889 independent reflections
Absorption correction: multi-scan	2327 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2003)	$R_{\rm int} = 0.065$
$T_{\min} = 0.981, \ T_{\max} = 0.981$	

Refinement

_ ..

$R[F^2 > 2\sigma(F^2)] = 0.077$	H atoms treated by a mixture of
$wR(F^2) = 0.198$	independent and constrained
S = 1.00	refinement
2889 reflections	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
231 parameters	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

V = 844.2 (3) Å³ 7 - 2

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.20$ mm

 $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K

l able 1			
Hydrogen-bond	geometry	(Å,	°).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1 - H1B \cdot \cdot \cdot N2$	0.82	1.89	2.705 (2)	171
$O4-H4A\cdots O3$	0.82	2.22	2.897 (2)	141
$N1 - H1A \cdots O4$	0.93 (3)	1.94	2.778 (3)	155
$O5-H5B\cdots O1$	0.95 (5)	2.01	2.874 (2)	165
O5−H5C···O2	0.84 (4)	1.97	2.844 (3)	179

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank Professor Victor N. Khrustalev for fruitful discussions and help in this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2374).

References

Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Genin, M. J., Biles, C., Keiser, B. J., Poppe, S. M., Swaney, S. M., Tarpley, W. G., Yagi, Y. & Romero, D. L. (2000). J. Med. Chem. 43, 1034-1040.

Hema, R., Parthasarathi, V., Ravikumar, K., Sridhar, B. & Pandiarajan, K. (2006). Acta Cryst. E62, 0656-0658.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, o480 [doi:10.1107/S160053681100242X]

Ethyl 3,6-dihydroxy-6-methyl-4-phenyl-4,5,6,7-tetrahydro-1*H*-indazole-5-carboxylate monohydrate

A. M. Maharramov, A. I. Ismiyev and B. A. Rashidov

Comment

In the field of heterocyclic compounds, azoles are important due to their wide range of applications (Genin *et al.*, 2000). In the microbial evaluation of organic compounds for the development of current research in drug discovery and medicinal chemistry we have prepared the title compound and determined its crystal structure which has been presented in this article.

In the title compound (Fig. 1), the cyclohexene ring adopts a half-chair conformation, C6 lies 0.685 (3) Å out of the plane formed by the rest of the ring atoms. The indazole ring (N1/N2/C3/C3A/C7A) is essentially planar with maximum deviation from the ring plane being 0.0192 (12) Å for C7A. In the crystal structure, intermolecular hydrogen bonds O1—H1B···N2 result in centrosymmetric dimers lying about inversion centers. Intramolecular hydrogen bonds O4—H4A···O3 result in six-membered rings. The dimers are further packed and stabilized by N—H···O and O—H···O hydrogen bonds (Table 1 and Fig. 2).

The molecular dimensions in the title compound are in close agreement with the corresponding molecular dimensions of a closely related compoud (Hema *et al.*, 2006).

Experimental

(rac)-Diethyl-4-hydroxy-4-methyl-6-oxo-2-phenyl-1,3-dicarboxylate (20 mmol) and hydroxylamine hydrochloride (20 mmol) were dissolved in 20 ml e thanol. The mixture was stirred at 345–350 K for 10 h. After cooling to a room temperature colorless crystals were obtained which were filtered and washed with ethanol. The crystals were dissolved in ethanol (50 ml) and recrystallized to yield colourless block-shaped crystals of the title compound suitable for X-ray crystallographic analysis..

Refinement

The hydrogen atoms of the water of hydration and amino group were localized from difference-Fourier maps and included in the refinement with isotropic displacement parameters. The rest of the hydrogen atoms were placed in calculated positions with and refined in the riding model at O—H = 0.82 and C—H = 0.93-0.98 Å with isotropic displacement parameters $U_{iso}(H) = 1.2$ or $1.5U_{eq}(parent atoms)$.

Figures

Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Fig. 2. The hydrogen-bonded (dashed lines) packing in the title compound; H-atoms not involved in hydrogen bonding have been excluded for clarity.

Ethyl 3,6-dihydroxy-6-methyl-4-phenyl-4,5,6,7-tetrahydro-1*H*-indazole-5- carboxylate monohydrate

Crystal data	
$C_{17}H_{20}N_2O_4\cdot H_2O$	Z = 2
$M_r = 334.37$	F(000) = 356
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.315 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 6.9964 (15) Å	Cell parameters from 909 reflections
b = 8.8647 (19) Å	$\theta = 2.5 - 30.6^{\circ}$
c = 15.124 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\alpha = 99.363 \ (6)^{\circ}$	T = 296 K
$\beta = 95.281 \ (6)^{\circ}$	Prism, colourless
$\gamma = 112.271 \ (4)^{\circ}$	$0.20\times0.20\times0.20\ mm$
V = 844.2 (3) Å ³	

Data collection

Bruker APEXII CCD diffractometer	2889 independent reflections
Radiation source: fine-focus sealed tube	2327 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.065$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2003)	$h = -8 \rightarrow 8$
$T_{\min} = 0.981, \ T_{\max} = 0.981$	$k = -10 \rightarrow 10$
6332 measured reflections	$l = -17 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.077$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.198$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.00	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0611P)^{2} + 0.4352P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2889 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
231 parameters	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.37 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	sotropic	or e	quivalent	isotrop	oic dis	placement	parameters ($(Å^2$)
		• • • • • • • • • • • • • •								p	/	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.9685 (3)	1.3998 (2)	0.37394 (14)	0.0463 (5)
H1B	0.9998	1.4897	0.4089	0.069*
O2	0.7109 (3)	0.6179 (2)	0.15151 (15)	0.0544 (6)
O3	0.4935 (3)	0.7477 (2)	0.14842 (13)	0.0421 (5)
O4	0.3968 (2)	0.8009 (2)	0.33029 (13)	0.0363 (5)
H4A	0.3737	0.7989	0.2759	0.054*
O5	0.0528 (4)	0.5446 (3)	0.2177 (2)	0.0637 (7)
H5B	0.009 (6)	0.485 (6)	0.264 (3)	0.081 (13)*
H5C	-0.051 (6)	0.563 (5)	0.198 (3)	0.068 (11)*
N1	0.8141 (3)	1.1503 (2)	0.52847 (16)	0.0340 (5)
N2	0.8884 (3)	1.3042 (2)	0.50553 (16)	0.0373 (6)
C3	0.8995 (4)	1.2791 (3)	0.41766 (18)	0.0326 (6)
C3A	0.8266 (3)	1.1038 (3)	0.38069 (17)	0.0302 (6)
C4	0.7975 (3)	1.0105 (3)	0.28485 (17)	0.0306 (6)
H4B	0.6826	1.0230	0.2490	0.037*
C5	0.7311 (3)	0.8213 (3)	0.28392 (18)	0.0312 (6)
H5A	0.8575	0.8062	0.3058	0.037*
C6	0.5710 (3)	0.7581 (3)	0.34881 (18)	0.0316 (6)

C7	0.6747 (4)	0.8481 (3)	0.44704 (18)	0.0325 (6)
H7A	0.5710	0.8228	0.4869	0.039*
H7B	0.7819	0.8107	0.4667	0.039*
C7A	0.7705 (3)	1.0317 (3)	0.45193 (17)	0.0307 (6)
C8	0.9887 (4)	1.0726 (3)	0.23964 (18)	0.0327 (6)
C9	1.1870 (4)	1.1056 (3)	0.2856 (2)	0.0430 (7)
H9A	1.2015	1.0902	0.3449	0.052*
C10	1.3610 (5)	1.1603 (3)	0.2451 (3)	0.0546 (9)
H10A	1.4921	1.1823	0.2771	0.066*
C11	1.3422 (5)	1.1827 (4)	0.1572 (3)	0.0635 (10)
H11A	1.4600	1.2185	0.1294	0.076*
C12	1.1468 (6)	1.1516 (4)	0.1104 (3)	0.0690 (10)
H12A	1.1332	1.1688	0.0515	0.083*
C13	0.9724 (5)	1.0950 (4)	0.1516 (2)	0.0519 (8)
H13A	0.8412	1.0715	0.1193	0.062*
C14	0.6486 (4)	0.7183 (3)	0.18762 (19)	0.0350 (6)
C15	0.3862 (5)	0.6480 (4)	0.0578 (2)	0.0511 (8)
H15A	0.3097	0.5325	0.0606	0.061*
H15B	0.4869	0.6527	0.0172	0.061*
C16	0.2398 (6)	0.7190 (5)	0.0244 (3)	0.0693 (10)
H16A	0.1663	0.6560	-0.0352	0.104*
H16B	0.3173	0.8331	0.0217	0.104*
H16C	0.1409	0.7137	0.0650	0.104*
C17	0.4995 (4)	0.5701 (3)	0.3400 (2)	0.0432 (7)
H17A	0.4114	0.5349	0.3842	0.065*
H17B	0.6197	0.5438	0.3502	0.065*
H17C	0.4224	0.5133	0.2800	0.065*
H1A	0.760 (4)	1.143 (3)	0.582 (2)	0.034 (7)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0653 (12)	0.0205 (8)	0.0410 (13)	0.0057 (8)	0.0101 (9)	0.0015 (8)
O2	0.0622 (12)	0.0460 (11)	0.0529 (15)	0.0319 (10)	-0.0016 (10)	-0.0141 (10)
O3	0.0449 (10)	0.0372 (9)	0.0360 (12)	0.0172 (8)	-0.0059 (8)	-0.0085 (8)
O4	0.0331 (9)	0.0360 (9)	0.0361 (11)	0.0138 (7)	0.0014 (7)	0.0008 (8)
O5	0.0449 (12)	0.0594 (14)	0.075 (2)	0.0095 (10)	-0.0053 (12)	0.0196 (13)
N1	0.0382 (11)	0.0261 (10)	0.0290 (14)	0.0056 (8)	0.0054 (9)	0.0006 (9)
N2	0.0442 (12)	0.0233 (10)	0.0366 (15)	0.0075 (8)	0.0055 (9)	0.0015 (9)
C3	0.0356 (12)	0.0247 (11)	0.0302 (15)	0.0065 (9)	0.0043 (10)	0.0011 (10)
C3A	0.0316 (11)	0.0210 (11)	0.0312 (15)	0.0065 (8)	0.0028 (9)	-0.0015 (10)
C4	0.0349 (12)	0.0222 (11)	0.0304 (15)	0.0095 (9)	0.0001 (10)	0.0020 (9)
C5	0.0313 (11)	0.0212 (11)	0.0361 (16)	0.0089 (9)	0.0009 (10)	-0.0002 (10)
C6	0.0315 (11)	0.0227 (11)	0.0352 (16)	0.0079 (9)	0.0020 (10)	0.0012 (10)
C7	0.0339 (12)	0.0258 (11)	0.0337 (16)	0.0085 (9)	0.0037 (10)	0.0053 (10)
C7A	0.0291 (11)	0.0249 (11)	0.0316 (15)	0.0082 (9)	-0.0002 (9)	-0.0020 (10)
C8	0.0404 (13)	0.0190 (10)	0.0341 (16)	0.0097 (9)	0.0057 (10)	-0.0003 (10)
C9	0.0459 (15)	0.0370 (13)	0.0455 (19)	0.0168 (11)	0.0067 (12)	0.0072 (12)

C10	0.0438 (15)	0.0390 (15)	0.081 (3)	0.0164 (12)	0.0190 (15)	0.0091 (15)	
C11	0.063 (2)	0.0436 (16)	0.080 (3)	0.0124 (14)	0.0382 (19)	0.0118 (17)	
C12	0.087 (3)	0.062 (2)	0.048 (2)	0.0133 (18)	0.0266 (18)	0.0183 (17)	
C13	0.0565 (17)	0.0467 (16)	0.044 (2)	0.0117 (13)	0.0081 (14)	0.0102 (14)	
C14	0.0347 (12)	0.0235 (11)	0.0412 (17)	0.0080 (9)	0.0060 (11)	0.0015 (10)	
C15	0.0574 (17)	0.0436 (15)	0.0371 (19)	0.0143 (13)	-0.0075 (13)	-0.0090 (13)	
C16	0.074 (2)	0.070 (2)	0.053 (2)	0.0300 (18)	-0.0157 (17)	-0.0018 (17)	
C17	0.0453 (14)	0.0245 (12)	0.051 (2)	0.0060 (10)	0.0055 (12)	0.0053 (11)	
Geometric pa	rameters (Å, °)						
O1—C3	D1—C3		C7—C7A		1.493 (3)		
O1—H1B		0.8200	С7—	C7—H7A		0.9700	
O2—C14		1.209 (3)	С7—	C7—H7B		0.9700	
O3—C14		1.321 (3)	C8–	-C13	1.379 (4)		
O3—C15		1.462 (3)	C8-	-С9	1.394 (4)		
O4—C6		1.425 (3)	С9—	-C10	1.371 (4)		
O4—H4A		0.8200	С9—Н9А		0.9300		
O5—H5B		0.95 (5)	C10—C11		1.378 (5)		
O5—H5C		0.85 (4)	C10-	—H10A	0.9300		
N1—C7A		1.354 (3)	C11-	C11—C12		1.385 (6)	
N1—N2		1.379 (3)	C11-	C11—H11A		0.9300	
N1—H1A		0.92 (3)	C12—C13		1.381 (5)		
N2—C3		1.326 (4)	C12—H12A		0.9300		
C3—C3A		1.432 (3)	C13—H13A		0.9300		
C3A—C7A		1.355 (4)	C15—C16		1.482 (5)		
C3A—C4		1.502 (3)	C15—H15A		0.9700		
C4—C8		1.514 (3)	C15—H15B		0.9700		
C4—C5		1.558 (3)	C16—H16A		0.9600		
C4—H4B		0.9800	C16—H16B		0.9600		
C5—C14		1.517 (3)	C16—H16C		0.9600		
C5—C6		1.561 (4)	C17—H17A		0.9600		
C5—H5A		0.9800	C17—H17B		0.9600		
C6—C17		1.526 (3)	C17-	—H17C	0.96	600	
C6—C7		1.532 (3)					
C3—O1—H1E	3	109.5	C3A	—С7А—С7	125	.0 (2)	
C14—O3—C15		117.9 (2)	C13-	C13—C8—C9		117.9 (3)	
C6—O4—H4A		109.5	C13—C8—C4		121.4 (2)		
H5B		105 (4)	C9—C8—C4		120.6 (2)		
C7A—N1—N2		108.2 (2)	C10—C9—C8		121.2 (3)		
C7A—N1—H1A		130.0 (17)	С10—С9—Н9А		119.4		
N2—N1—H1A		117.5 (17)	С8—С9—Н9А		119.4		
C3—N2—N1		107.5 (2)	C9—C10—C11		120.2 (3)		
O1—C3—N2 1		123.5 (2)	C9—C10—H10A		119.9		
O1—C3—C3A		126.8 (2)	C11-	C11—C10—H10A		119.9	
N2—C3—C3A		109.6 (2)	C10-	C10—C11—C12		119.6 (3)	
C7A—C3A—C3		104.3 (2)	C10-	C10-C11-H11A		120.2	
C7A—C3A—C4		124.9 (2)	C12-	C12—C11—H11A		120.2	
C3—C3A—C4		130.6 (2)	C13—C12—C11		119.6 (4)		

C3A—C4—C8	114.11 (18)	C13—C12—H12A	120.2
C3A—C4—C5	109.1 (2)	C11—C12—H12A	120.2
C8—C4—C5	109.85 (19)	C8—C13—C12	121.4 (3)
C3A—C4—H4B	107.8	C8—C13—H13A	119.3
C8—C4—H4B	107.8	С12—С13—Н13А	119.3
C5—C4—H4B	107.8	O2—C14—O3	123.6 (2)
C14—C5—C4	110.5 (2)	O2—C14—C5	125.0 (2)
C14—C5—C6	111.47 (18)	O3—C14—C5	111.4 (2)
C4—C5—C6	112.80 (19)	O3—C15—C16	107.3 (2)
C14—C5—H5A	107.2	O3—C15—H15A	110.3
С4—С5—Н5А	107.2	С16—С15—Н15А	110.3
С6—С5—Н5А	107.2	O3—C15—H15B	110.3
O4—C6—C17	111.01 (18)	C16—C15—H15B	110.3
O4—C6—C7	106.04 (18)	H15A—C15—H15B	108.5
C17—C6—C7	109.6 (2)	C15—C16—H16A	109.5
O4—C6—C5	110.4 (2)	C15—C16—H16B	109.5
C17—C6—C5	110.5 (2)	H16A—C16—H16B	109.5
C7—C6—C5	109.18 (18)	C15—C16—H16C	109.5
C7A—C7—C6	109.0 (2)	H16A—C16—H16C	109.5
С7А—С7—Н7А	109.9	H16B—C16—H16C	109.5
С6—С7—Н7А	109.9	С6—С17—Н17А	109.5
С7А—С7—Н7В	109.9	С6—С17—Н17В	109.5
С6—С7—Н7В	109.9	H17A—C17—H17B	109.5
H7A—C7—H7B	108.3	С6—С17—Н17С	109.5
N1—C7A—C3A	110.2 (2)	Н17А—С17—Н17С	109.5
N1—C7A—C7	124.8 (2)	H17B—C17—H17C	109.5
C7A—N1—N2—C3	-3.1 (3)	C3—C3A—C7A—N1	-3.0 (3)
N1—N2—C3—O1	-178.5 (2)	C4—C3A—C7A—N1	-178.8 (2)
N1—N2—C3—C3A	1.2 (3)	C3—C3A—C7A—C7	177.1 (2)
O1—C3—C3A—C7A	-179.2 (2)	C4—C3A—C7A—C7	1.3 (4)
N2—C3—C3A—C7A	1.1 (3)	C6—C7—C7A—N1	157.6 (2)
O1—C3—C3A—C4	-3.8 (4)	C6—C7—C7A—C3A	-22.5 (3)
N2—C3—C3A—C4	176.5 (2)	C3A—C4—C8—C13	-135.7 (2)
C7A—C3A—C4—C8	-133.3 (2)	C5—C4—C8—C13	101.3 (3)
C3—C3A—C4—C8	52.1 (3)	C3A—C4—C8—C9	45.6 (3)
C7A—C3A—C4—C5	-10.0 (3)	C5—C4—C8—C9	-77.3 (3)
C3—C3A—C4—C5	175.4 (2)	C13—C8—C9—C10	0.7 (4)
C3A—C4—C5—C14	165.98 (18)	C4—C8—C9—C10	179.3 (2)
C8—C4—C5—C14	-68.2 (2)	C8—C9—C10—C11	-0.4 (4)
C3A—C4—C5—C6	40.4 (2)	C9—C10—C11—C12	0.8 (5)
C8—C4—C5—C6	166.2 (2)	C10-C11-C12-C13	-1.4 (5)
C14—C5—C6—O4	-72.4 (2)	C9—C8—C13—C12	-1.3 (4)
C4—C5—C6—O4	52.7 (2)	C4—C8—C13—C12	-180.0 (3)
C14—C5—C6—C17	50.8 (3)	C11—C12—C13—C8	1.7 (5)
C4—C5—C6—C17	175.87 (19)	C15—O3—C14—O2	2.6 (4)
C14—C5—C6—C7	171.44 (19)	C15—O3—C14—C5	-175.3 (2)
C4—C5—C6—C7	-63.5 (2)	C4—C5—C14—O2	126.8 (3)
O4—C6—C7—C7A	-68.0 (2)	C6—C5—C14—O2	-106.9 (3)
C17—C6—C7—C7A	172.1 (2)	C4—C5—C14—O3	-55.4 (3)

C5—C6—C7—C7A	50.9 (2)		С6—С	C5—C14—O3		70.9 (3)
N2—N1—C7A—C3A	3.9 (3)		C14—	O3—C15—C16		-172.	8 (3)
N2—N1—C7A—C7	-176.2 (2)						
Hydrogen-bond geometry (Å, °)							
D—H···A		<i>D</i> —Н		H···A	$D \cdots A$		D—H···A
O1—H1B···N2 ⁱ		0.82		1.89	2.705 (2)		171
O4—H4A···O3 ⁱ		0.82		2.22	2.897 (2)		141
N1—H1A····O4 ⁱⁱ		0.93 (3)		1.94	2.778 (3)		155
O5—H5B···O1 ⁱ		0.95 (5)		2.01	2.874 (2)		165
O5—H5C···O2 ⁱⁱ		0.84 (4)		1.97	2.844 (3)		179
Symmetry codes: (i) ; (ii) .							

